Monthly Average Retail Prices of Essential Commodities in India from January 2012 to July 2017

Data Source -- Department of Consumer Affairs (Price Monitoring Cell)
Note -- All the prices are in Rs./Kg. except Milk whose price is in Rs./Litre

In [1]:
import pandas as pd
In [2]:
def str_to_datetime(improper_str):
    month, _, year = improper_str.partition(" ")
    day = "1"
    return pd.to_datetime("{0} {1}, {2}".format(month, day, year))

We need to read HTML tables and convert them into Series objects:

In [3]:
def table_to_series(table_str):
    df = pd.read_html(table_str)[0].T.iloc[1:-1,[0,2]]
    df[0] = df[0].map(str_to_datetime)
    df.rename(index = df[0], inplace=True)
    del df[0]
    df[2] = pd.to_numeric(df[2])
    return df[2]

Let's aggregate all the Series objects in a DataFrame object:

In [4]:
data = pd.DataFrame()
In [5]:
data["Rice"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>20.73</td><td>20.87</td><td>21.02</td><td>20.77</td><td>21.08</td><td>21.27</td><td>21.44</td><td>22.29</td><td>22.56</td><td>23.01</td><td>23.08</td><td>23</td><td>23.03</td><td>23.33</td><td>23.99</td><td>24.36</td><td>24.46</td><td>24.99</td><td>25.47</td><td>25.63</td><td>26.05</td><td>26.17</td><td>26.71</td><td>26.08</td><td>25.61</td><td>25.85</td><td>26.71</td><td>26.64</td><td>26.77</td><td>26.77</td><td>27.31</td><td>27.22</td><td>27.3</td><td>26.93</td><td>26.57</td><td>26.52</td><td>26.42</td><td>26.24</td><td>26.11</td><td>26.09</td><td>25.91</td><td>25.51</td><td>25.6</td><td>25.78</td><td>26.03</td><td>26.09</td><td>26.48</td><td>25.92</td><td>25.45</td><td>25.31</td><td>25.55</td><td>25.79</td><td>25.21</td><td>25.34</td><td>25.69</td><td>26.04</td><td>26.2</td><td>25.98</td><td>25.98</td><td>26.41</td><td>26.4</td><td>27.01</td><td>26.85</td><td>26.59</td><td>26.7</td><td>27.06</td><td>27.8</td><td>25.55</td>
			</tr><tr align="left">
				<td>All India Average</td><td>20.51</td><td>20.59</td><td>20.77</td><td>20.88</td><td>21.05</td><td>21.76</td><td>22.48</td><td>23.02</td><td>23.36</td><td>24.22</td><td>24.41</td><td>24.44</td><td>24.65</td><td>25.21</td><td>25.1</td><td>25.25</td><td>25.4</td><td>25.85</td><td>26.32</td><td>26.65</td><td>26.9</td><td>27.02</td><td>27.53</td><td>27.43</td><td>27.23</td><td>27.44</td><td>27.57</td><td>27.44</td><td>27.57</td><td>27.79</td><td>28.26</td><td>28.38</td><td>28.78</td><td>28.54</td><td>28.15</td><td>27.86</td><td>27.64</td><td>27.66</td><td>27.43</td><td>27.56</td><td>27.5</td><td>27.58</td><td>27.52</td><td>27.34</td><td>27.4</td><td>27.55</td><td>27.52</td><td>27.43</td><td>27.06</td><td>27.04</td><td>26.95</td><td>26.85</td><td>26.83</td><td>27.03</td><td>27.38</td><td>27.53</td><td>27.51</td><td>27.45</td><td>27.73</td><td>28.15</td><td>28.34</td><td>28.87</td><td>28.85</td><td>28.64</td><td>28.84</td><td>29.07</td><td>29.47</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [6]:
data["Wheat"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>13.5</td><td>13.58</td><td>13.84</td><td>13.67</td><td>13.79</td><td>13.79</td><td>13.76</td><td>14.57</td><td>15.82</td><td>15.84</td><td>16</td><td>16.46</td><td>16.51</td><td>16.65</td><td>17.22</td><td>17.06</td><td>16.45</td><td>16.86</td><td>17.09</td><td>17.12</td><td>17.34</td><td>17.1</td><td>16.93</td><td>17.21</td><td>17.43</td><td>17.5</td><td>17.5</td><td>17.45</td><td>17.25</td><td>17.07</td><td>17.11</td><td>17.26</td><td>17.26</td><td>17.35</td><td>17.66</td><td>17.65</td><td>17.95</td><td>18.04</td><td>17.9</td><td>17.76</td><td>17.45</td><td>17.46</td><td>17.47</td><td>17.47</td><td>17.63</td><td>17.88</td><td>18.28</td><td>18.51</td><td>18.58</td><td>18.64</td><td>18.78</td><td>18.72</td><td>18.73</td><td>18.82</td><td>18.99</td><td>19.11</td><td>19.32</td><td>19.37</td><td>20.45</td><td>21.24</td><td>21.42</td><td>21.29</td><td>20.77</td><td>20.26</td><td>19.95</td><td>19.72</td><td>19.56</td><td>18.13</td>
			</tr><tr align="left">
				<td>All India Average</td><td>16.22</td><td>16.16</td><td>16.28</td><td>16.39</td><td>16.51</td><td>16.73</td><td>17.02</td><td>17.73</td><td>18.8</td><td>19.21</td><td>19.53</td><td>19.96</td><td>19.9</td><td>20.28</td><td>20.57</td><td>20.45</td><td>20.09</td><td>20.52</td><td>20.66</td><td>20.87</td><td>20.6</td><td>21.06</td><td>21.2</td><td>21.58</td><td>21.84</td><td>21.76</td><td>21.61</td><td>21.29</td><td>21.03</td><td>21</td><td>21.49</td><td>21.52</td><td>22.07</td><td>22.16</td><td>22.12</td><td>21.89</td><td>22.06</td><td>22.9</td><td>22.72</td><td>22.61</td><td>22.33</td><td>22.56</td><td>22.64</td><td>22.5</td><td>22.7</td><td>23.14</td><td>23.54</td><td>23.41</td><td>23.35</td><td>23.82</td><td>23.69</td><td>23.27</td><td>23.34</td><td>23.39</td><td>23.31</td><td>23.31</td><td>23.32</td><td>23.42</td><td>24.05</td><td>24.56</td><td>24.51</td><td>24.65</td><td>24.41</td><td>23.96</td><td>23.73</td><td>23.68</td><td>23.67</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [7]:
data["Atta (Wheat)"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>15.66</td><td>15.72</td><td>15.94</td><td>15.81</td><td>15.89</td><td>15.92</td><td>15.94</td><td>16.6</td><td>17.75</td><td>18.06</td><td>18.52</td><td>18.78</td><td>19.1</td><td>19.17</td><td>19.54</td><td>19.63</td><td>19.07</td><td>19.49</td><td>19.83</td><td>19.88</td><td>20.13</td><td>20.13</td><td>20.12</td><td>20.64</td><td>20.86</td><td>20.85</td><td>20.75</td><td>20.63</td><td>20.43</td><td>20.46</td><td>20.56</td><td>20.85</td><td>20.65</td><td>20.61</td><td>20.63</td><td>20.72</td><td>20.95</td><td>21.01</td><td>20.96</td><td>21</td><td>20.89</td><td>20.87</td><td>20.74</td><td>20.77</td><td>20.79</td><td>20.91</td><td>21.16</td><td>21.3</td><td>21.27</td><td>21.4</td><td>21.5</td><td>21.57</td><td>21.57</td><td>21.67</td><td>21.89</td><td>21.98</td><td>22.12</td><td>22.15</td><td>23.3</td><td>24.81</td><td>24.95</td><td>24.69</td><td>24.29</td><td>23.78</td><td>23.41</td><td>23.05</td><td>23.05</td><td>21.11</td>
			</tr><tr align="left">
				<td>All India Average</td><td>17.95</td><td>17.87</td><td>17.84</td><td>17.79</td><td>17.88</td><td>18.15</td><td>18.44</td><td>19.1</td><td>20.13</td><td>21.03</td><td>21.56</td><td>21.95</td><td>22.02</td><td>22.39</td><td>22.49</td><td>22.51</td><td>22.29</td><td>22.65</td><td>22.78</td><td>22.87</td><td>22.81</td><td>23.19</td><td>23.35</td><td>23.41</td><td>23.8</td><td>23.55</td><td>23.47</td><td>23.4</td><td>22.92</td><td>23.12</td><td>23.51</td><td>23.69</td><td>23.96</td><td>24.12</td><td>24.06</td><td>23.98</td><td>24.19</td><td>24.97</td><td>24.97</td><td>24.95</td><td>24.53</td><td>24.61</td><td>24.67</td><td>24.49</td><td>24.62</td><td>24.78</td><td>24.74</td><td>24.71</td><td>24.58</td><td>24.98</td><td>24.95</td><td>24.58</td><td>24.48</td><td>24.61</td><td>24.76</td><td>24.97</td><td>25.07</td><td>25.38</td><td>26.14</td><td>27.12</td><td>27.12</td><td>26.85</td><td>26.64</td><td>26.17</td><td>25.98</td><td>25.7</td><td>25.97</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [8]:
data["Gram"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>48.83</td><td>49.73</td><td>50.92</td><td>51.36</td><td>53.5</td><td>55.77</td><td>59.27</td><td>63.55</td><td>64.17</td><td>63.75</td><td>63.71</td><td>63</td><td>60.98</td><td>59.2</td><td>55.61</td><td>54.39</td><td>55.34</td><td>55.38</td><td>54.67</td><td>51.51</td><td>51.36</td><td>50.87</td><td>51.19</td><td>50.91</td><td>48.87</td><td>48.17</td><td>49.14</td><td>48.64</td><td>49.08</td><td>48.36</td><td>46.95</td><td>46.54</td><td>46.33</td><td>45.95</td><td>46.41</td><td>46.69</td><td>47.68</td><td>48.25</td><td>48.93</td><td>50.95</td><td>55.74</td><td>58.08</td><td>59.31</td><td>60.66</td><td>62.04</td><td>68.13</td><td>71.51</td><td>70.36</td><td>68.06</td><td>67.08</td><td>66.19</td><td>69.01</td><td>74.21</td><td>80.22</td><td>93.68</td><td>99.4</td><td>96.87</td><td>111.3</td><td>123.18</td><td>124.03</td><td>112.58</td><td>97.45</td><td>84.86</td><td>84.67</td><td>83.65</td><td>81.06</td><td>76.73</td><td>71.01</td>
			</tr><tr align="left">
				<td>All India Average</td><td>49.19</td><td>49.2</td><td>49.97</td><td>50.96</td><td>53.88</td><td>56.36</td><td>60.98</td><td>66</td><td>66.65</td><td>66</td><td>65.9</td><td>64.94</td><td>62.44</td><td>60.49</td><td>57.65</td><td>56.18</td><td>55.79</td><td>54.72</td><td>52.56</td><td>50.96</td><td>51.3</td><td>51.34</td><td>50.95</td><td>50.46</td><td>49.58</td><td>48.21</td><td>48.79</td><td>48.7</td><td>48.59</td><td>47.41</td><td>46.36</td><td>46.08</td><td>46.12</td><td>46.2</td><td>45.64</td><td>45.48</td><td>46.97</td><td>48.33</td><td>49.39</td><td>51.31</td><td>56.54</td><td>59.4</td><td>60</td><td>61.09</td><td>63.78</td><td>68.05</td><td>69.56</td><td>69.01</td><td>67.42</td><td>66.05</td><td>65.48</td><td>68.26</td><td>73.58</td><td>79.26</td><td>93.07</td><td>99.79</td><td>100.28</td><td>112.11</td><td>123.41</td><td>123.7</td><td>114.84</td><td>100.76</td><td>89.43</td><td>88.8</td><td>86.79</td><td>85.14</td><td>81.95</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [9]:
data["Tur"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>63.21</td><td>62.58</td><td>62.48</td><td>62.1</td><td>63.37</td><td>63.97</td><td>65.09</td><td>69.75</td><td>71.55</td><td>70.59</td><td>70.86</td><td>70.46</td><td>69.89</td><td>68.25</td><td>67.47</td><td>68.16</td><td>69.14</td><td>69.37</td><td>69.5</td><td>68.74</td><td>69.4</td><td>70.1</td><td>71.36</td><td>71.58</td><td>70.84</td><td>71.41</td><td>72.19</td><td>71.74</td><td>72.15</td><td>72.23</td><td>72.35</td><td>72.64</td><td>74.9</td><td>75.04</td><td>75.53</td><td>76.53</td><td>77.77</td><td>78.66</td><td>80.38</td><td>83.95</td><td>89.27</td><td>92.08</td><td>94.82</td><td>99.64</td><td>112.12</td><td>134.8</td><td>155.8</td><td>153.31</td><td>150.76</td><td>145.12</td><td>141.21</td><td>144.74</td><td>146.13</td><td>144.41</td><td>143.44</td><td>137.22</td><td>123.45</td><td>123.31</td><td>121.73</td><td>118.15</td><td>109.36</td><td>102.54</td><td>94.73</td><td>92.81</td><td>90.59</td><td>86.19</td><td>82.04</td><td>99.17</td>
			</tr><tr align="left">
				<td>All India Average</td><td>61.36</td><td>61.15</td><td>60.82</td><td>60.59</td><td>61.74</td><td>63.08</td><td>65.63</td><td>69.99</td><td>71.15</td><td>70.09</td><td>69.45</td><td>69.02</td><td>67.98</td><td>67.17</td><td>67.07</td><td>68.28</td><td>68.89</td><td>69.04</td><td>68.78</td><td>68.4</td><td>69.07</td><td>69.53</td><td>70.18</td><td>70.41</td><td>70.02</td><td>69.95</td><td>70.14</td><td>70.25</td><td>70.41</td><td>69.93</td><td>70.35</td><td>71.68</td><td>73.93</td><td>74.11</td><td>75.1</td><td>75.65</td><td>77.13</td><td>79</td><td>81.75</td><td>85.23</td><td>91.89</td><td>95.33</td><td>98.42</td><td>105.13</td><td>119.95</td><td>143.78</td><td>152.29</td><td>150.08</td><td>145.74</td><td>140.14</td><td>135.27</td><td>138.22</td><td>141.19</td><td>140.1</td><td>139.33</td><td>132.27</td><td>121.27</td><td>121.57</td><td>118.82</td><td>113.03</td><td>102.96</td><td>95.95</td><td>89.55</td><td>88.13</td><td>85.35</td><td>82.5</td><td>79.02</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [10]:
data["Urad"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>59.88</td><td>59.35</td><td>59.05</td><td>59.47</td><td>59.81</td><td>60.59</td><td>61.82</td><td>63.89</td><td>64.2</td><td>63.78</td><td>63.24</td><td>62.97</td><td>61.86</td><td>61.33</td><td>59.84</td><td>59.55</td><td>60.84</td><td>61.44</td><td>61.81</td><td>61.49</td><td>62.5</td><td>62.93</td><td>66.24</td><td>65.23</td><td>65.49</td><td>66.07</td><td>67</td><td>67.06</td><td>67.79</td><td>68.8</td><td>69.86</td><td>72.55</td><td>74.58</td><td>74.42</td><td>73.45</td><td>74.65</td><td>75.71</td><td>76.7</td><td>76.78</td><td>79.63</td><td>86.18</td><td>90.39</td><td>92.89</td><td>95.23</td><td>100.51</td><td>118.97</td><td>136.1</td><td>133.16</td><td>127.86</td><td>126.02</td><td>125.4</td><td>132.2</td><td>143.9</td><td>143.11</td><td>141.39</td><td>134.69</td><td>124.24</td><td>121.51</td><td>115.65</td><td>110.67</td><td>105.04</td><td>101.47</td><td>96.64</td><td>96.59</td><td>95.05</td><td>91.18</td><td>86.88</td><td>94.97</td>
			</tr><tr align="left">
				<td>All India Average</td><td>60.29</td><td>59.33</td><td>58.59</td><td>58.42</td><td>58.1</td><td>58.36</td><td>60.07</td><td>62.44</td><td>62.8</td><td>62.35</td><td>61.3</td><td>60.93</td><td>59.76</td><td>59.13</td><td>58.15</td><td>58.07</td><td>58.43</td><td>58.47</td><td>58.33</td><td>58.73</td><td>59.81</td><td>60.75</td><td>63</td><td>63.41</td><td>64.35</td><td>65.13</td><td>65.87</td><td>67.26</td><td>69.07</td><td>71.2</td><td>72.75</td><td>76.01</td><td>78.61</td><td>76.32</td><td>75.71</td><td>76.27</td><td>77.97</td><td>79.15</td><td>79.62</td><td>82.99</td><td>91.33</td><td>97.34</td><td>98.86</td><td>100.88</td><td>107.54</td><td>129.42</td><td>142.15</td><td>142.64</td><td>139.56</td><td>137.17</td><td>135.29</td><td>141.35</td><td>152.19</td><td>152.73</td><td>151.67</td><td>143.84</td><td>131.5</td><td>126.13</td><td>119.57</td><td>113.77</td><td>107.86</td><td>103.44</td><td>98.84</td><td>99.33</td><td>97.29</td><td>95.02</td><td>90.5</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [11]:
data["Moong"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>63.8</td><td>64.51</td><td>64.4</td><td>64.52</td><td>64.51</td><td>65.33</td><td>66.68</td><td>71.18</td><td>72.39</td><td>72.73</td><td>73.56</td><td>74.67</td><td>74.55</td><td>74.24</td><td>74.25</td><td>74.92</td><td>77.24</td><td>79.06</td><td>78.02</td><td>76.47</td><td>75.84</td><td>76</td><td>77.71</td><td>77.66</td><td>78.95</td><td>82.18</td><td>86.65</td><td>90.13</td><td>91.24</td><td>87.97</td><td>85.98</td><td>87.81</td><td>88.05</td><td>87.3</td><td>90.56</td><td>93.89</td><td>95.79</td><td>96.98</td><td>97.06</td><td>98.72</td><td>100.74</td><td>99.54</td><td>97.37</td><td>96.25</td><td>97.28</td><td>104.6</td><td>107.78</td><td>106.07</td><td>104.38</td><td>101.79</td><td>100.55</td><td>101.64</td><td>101.96</td><td>99.35</td><td>96.35</td><td>93.76</td><td>88.55</td><td>87.56</td><td>85.58</td><td>85.99</td><td>83.06</td><td>81.64</td><td>79.81</td><td>81.39</td><td>80.89</td><td>78.31</td><td>76.42</td><td>87.28</td>
			</tr><tr align="left">
				<td>All India Average</td><td>63.11</td><td>63.04</td><td>62.21</td><td>62.29</td><td>62.13</td><td>62.27</td><td>64.21</td><td>69.22</td><td>70.47</td><td>70.26</td><td>71.5</td><td>73.02</td><td>72.55</td><td>72.65</td><td>72.7</td><td>73.12</td><td>73.91</td><td>74.75</td><td>74.26</td><td>73.71</td><td>73.19</td><td>74.08</td><td>75.71</td><td>76.64</td><td>78.78</td><td>82.24</td><td>85.13</td><td>88.31</td><td>89.08</td><td>87.08</td><td>86.69</td><td>88.29</td><td>89.09</td><td>89.25</td><td>93.64</td><td>96.02</td><td>98.14</td><td>99.32</td><td>99.21</td><td>100.41</td><td>102.29</td><td>101.29</td><td>99.11</td><td>98.36</td><td>99.71</td><td>107.2</td><td>108.78</td><td>107.31</td><td>105.31</td><td>102.56</td><td>100.96</td><td>100.88</td><td>100.72</td><td>98.41</td><td>96.86</td><td>92.93</td><td>87.75</td><td>86.58</td><td>84.18</td><td>82.69</td><td>80.64</td><td>79.24</td><td>78.75</td><td>80.89</td><td>80.59</td><td>78.9</td><td>76.83</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [12]:
data["Masoor"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>46.53</td><td>46.95</td><td>47.11</td><td>47.39</td><td>49.81</td><td>51.89</td><td>53.34</td><td>56.5</td><td>57.11</td><td>56.99</td><td>56.56</td><td>56.08</td><td>56.65</td><td>56.72</td><td>56.05</td><td>56.83</td><td>59.21</td><td>61.12</td><td>61.1</td><td>61.07</td><td>62.48</td><td>62.26</td><td>63.08</td><td>63.4</td><td>62.57</td><td>62.51</td><td>66.05</td><td>66.89</td><td>69.02</td><td>68.93</td><td>69.54</td><td>70.76</td><td>71.97</td><td>71.87</td><td>73.13</td><td>74.3</td><td>76.64</td><td>77.24</td><td>76.92</td><td>78.3</td><td>81.97</td><td>84.95</td><td>87.28</td><td>88.85</td><td>91.26</td><td>94.19</td><td>95.69</td><td>92.36</td><td>87.78</td><td>83.15</td><td>81.75</td><td>85.59</td><td>86.47</td><td>86.37</td><td>87.13</td><td>87.64</td><td>85.99</td><td>86.89</td><td>84.56</td><td>83.58</td><td>82.65</td><td>81.28</td><td>78.43</td><td>77.79</td><td>76.31</td><td>74</td><td>70.91</td><td>75.96</td>
			</tr><tr align="left">
				<td>All India Average</td><td>45.6</td><td>46.09</td><td>45.96</td><td>46.63</td><td>49.03</td><td>50.75</td><td>52.69</td><td>54.96</td><td>55.2</td><td>55.09</td><td>54.78</td><td>53.8</td><td>53.71</td><td>54.02</td><td>53.77</td><td>54.74</td><td>55.72</td><td>57.43</td><td>58</td><td>58.3</td><td>58.54</td><td>58.38</td><td>59.29</td><td>58.45</td><td>59.07</td><td>59.07</td><td>60.33</td><td>62.57</td><td>64.79</td><td>65.45</td><td>66.31</td><td>67.81</td><td>69.22</td><td>69.81</td><td>71.05</td><td>71.8</td><td>74</td><td>74.32</td><td>73.49</td><td>74.18</td><td>77.84</td><td>80.78</td><td>82.32</td><td>84.75</td><td>88.48</td><td>90.27</td><td>89.74</td><td>87.6</td><td>83.61</td><td>80.33</td><td>79.12</td><td>81.1</td><td>82.84</td><td>83.8</td><td>85.57</td><td>85.39</td><td>84.16</td><td>83.49</td><td>82.01</td><td>80.27</td><td>78.69</td><td>77.11</td><td>74.8</td><td>74.89</td><td>73.61</td><td>71.72</td><td>68.95</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [13]:
data["Groundnut Oil"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>115.26</td><td>116.06</td><td>117.12</td><td>119.74</td><td>121.36</td><td>121.14</td><td>122.64</td><td>128.23</td><td>130.29</td><td>132.23</td><td>131.59</td><td>132.83</td><td>136.09</td><td>137.28</td><td>137.75</td><td>136.26</td><td>134.52</td><td>134.8</td><td>134.54</td><td>136.08</td><td>137.87</td><td>137.02</td><td>136.43</td><td>135.16</td><td>133.14</td><td>133.6</td><td>137.87</td><td>138.94</td><td>139.3</td><td>134.85</td><td>137.69</td><td>137.3</td><td>137.05</td><td>134.31</td><td>134.57</td><td>132.24</td><td>132.51</td><td>132.13</td><td>132.46</td><td>132.73</td><td>132.83</td><td>131.27</td><td>130.09</td><td>129.74</td><td>128.55</td><td>130.32</td><td>131.44</td><td>130.54</td><td>130.24</td><td>132.32</td><td>133.12</td><td>132.14</td><td>134.01</td><td>134.94</td><td>136.19</td><td>137</td><td>136.81</td><td>138.7</td><td>138.58</td><td>140.94</td><td>141.47</td><td>140.29</td><td>140.78</td><td>139.46</td><td>138.51</td><td>137.28</td><td>137.02</td><td>133.93</td>
			</tr><tr align="left">
				<td>All India Average</td><td>110.03</td><td>112.06</td><td>115.81</td><td>120.18</td><td>121.98</td><td>123.45</td><td>125.67</td><td>129.18</td><td>129.54</td><td>130.26</td><td>131.63</td><td>133.6</td><td>134.08</td><td>134.74</td><td>134.74</td><td>133.61</td><td>132.44</td><td>131.04</td><td>130.38</td><td>128.96</td><td>128.55</td><td>126.09</td><td>125.3</td><td>124.65</td><td>122.32</td><td>120.82</td><td>122.24</td><td>121.53</td><td>122.39</td><td>118.76</td><td>121.93</td><td>120.95</td><td>119.61</td><td>119.05</td><td>119.13</td><td>118.24</td><td>119.14</td><td>119.95</td><td>119.1</td><td>119.63</td><td>120.88</td><td>120.54</td><td>120.62</td><td>121.48</td><td>123.57</td><td>124.1</td><td>123.66</td><td>123.79</td><td>123.62</td><td>123.2</td><td>122.8</td><td>125.03</td><td>129.3</td><td>132.23</td><td>134.52</td><td>135.05</td><td>135.47</td><td>135.8</td><td>135.55</td><td>135.39</td><td>135.42</td><td>133.84</td><td>133.46</td><td>133.37</td><td>132.76</td><td>131.69</td><td>131.09</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [14]:
data["Mustard Oil"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>92.87</td><td>95.65</td><td>96.9</td><td>99.02</td><td>100.31</td><td>99.33</td><td>98.97</td><td>103.38</td><td>105.62</td><td>106.78</td><td>106.43</td><td>106.59</td><td>106.25</td><td>106.99</td><td>106.82</td><td>104.79</td><td>102.44</td><td>100.6</td><td>99.97</td><td>97.32</td><td>97.44</td><td>97.09</td><td>98.68</td><td>97.91</td><td>96.69</td><td>96.08</td><td>95.63</td><td>96.04</td><td>95.54</td><td>94.03</td><td>94.72</td><td>95.09</td><td>95.22</td><td>94.94</td><td>95.38</td><td>95.82</td><td>97.61</td><td>97.06</td><td>97.13</td><td>97.73</td><td>98.02</td><td>99.93</td><td>100.1</td><td>102.06</td><td>102.95</td><td>107.21</td><td>118.6</td><td>115.05</td><td>113.06</td><td>111.89</td><td>108.16</td><td>106.66</td><td>106.32</td><td>106</td><td>106.48</td><td>109.04</td><td>108.33</td><td>108.95</td><td>110.48</td><td>111.23</td><td>110.2</td><td>110.16</td><td>108.67</td><td>105.54</td><td>105.22</td><td>104.17</td><td>102.58</td><td>103.94</td>
			</tr><tr align="left">
				<td>All India Average</td><td>91.08</td><td>92.55</td><td>94.22</td><td>96.72</td><td>97.94</td><td>97.97</td><td>99.74</td><td>103.01</td><td>104.63</td><td>104.73</td><td>105</td><td>104.98</td><td>104.66</td><td>105.54</td><td>104.38</td><td>103.22</td><td>100.73</td><td>99.93</td><td>98.76</td><td>97.23</td><td>96.64</td><td>96.22</td><td>98.54</td><td>98.77</td><td>98.51</td><td>98.06</td><td>97.91</td><td>98.14</td><td>97.63</td><td>96.84</td><td>97.17</td><td>97.02</td><td>97.42</td><td>97.71</td><td>97.62</td><td>97.74</td><td>99.41</td><td>101.32</td><td>99.64</td><td>99.75</td><td>100.22</td><td>101.53</td><td>102.77</td><td>103.23</td><td>105.24</td><td>107.17</td><td>113.32</td><td>112.57</td><td>111.91</td><td>110.87</td><td>107.76</td><td>106.34</td><td>108.36</td><td>108.42</td><td>108.37</td><td>109.4</td><td>110.05</td><td>109.53</td><td>110.59</td><td>111.58</td><td>110.58</td><td>110.06</td><td>109.65</td><td>107.62</td><td>106.9</td><td>105.88</td><td>105.58</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [15]:
data["Vanaspati"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>71.65</td><td>72.75</td><td>73.08</td><td>74.63</td><td>76.13</td><td>76.6</td><td>76.77</td><td>77.89</td><td>78.06</td><td>75.35</td><td>73.81</td><td>72.55</td><td>72.4</td><td>72.13</td><td>71.09</td><td>71.03</td><td>71.19</td><td>70.72</td><td>71.28</td><td>71.42</td><td>73.55</td><td>74.61</td><td>76.29</td><td>76.24</td><td>75.2</td><td>74.46</td><td>77.27</td><td>78.21</td><td>78.37</td><td>77.64</td><td>78.53</td><td>78.2</td><td>78.09</td><td>77.49</td><td>77.37</td><td>76.5</td><td>76.83</td><td>76.56</td><td>77.01</td><td>77.27</td><td>77.18</td><td>76.31</td><td>75.86</td><td>75.93</td><td>75.54</td><td>75.55</td><td>75.74</td><td>74.78</td><td>73.85</td><td>72.76</td><td>72.43</td><td>73.6</td><td>73.87</td><td>74.54</td><td>74.86</td><td>76.21</td><td>77.22</td><td>77.76</td><td>77.96</td><td>78.53</td><td>78.7</td><td>79.32</td><td>79.42</td><td>78.98</td><td>79.25</td><td>79.96</td><td>80.21</td><td>76.12</td>
			</tr><tr align="left">
				<td>All India Average</td><td>71.23</td><td>71.67</td><td>72.26</td><td>74.16</td><td>75.22</td><td>75.98</td><td>77.35</td><td>77.91</td><td>78.32</td><td>75.24</td><td>73.89</td><td>72.51</td><td>71.83</td><td>71.67</td><td>70.56</td><td>70.81</td><td>70.67</td><td>70.9</td><td>71.05</td><td>72.01</td><td>73.81</td><td>74.46</td><td>75.43</td><td>75.01</td><td>74.6</td><td>74.72</td><td>76.09</td><td>76.62</td><td>76.69</td><td>76.32</td><td>77.22</td><td>77.53</td><td>76.78</td><td>76.5</td><td>76.12</td><td>75.75</td><td>76.18</td><td>76.85</td><td>76.36</td><td>75.95</td><td>75.61</td><td>74.84</td><td>74.66</td><td>74.15</td><td>73.67</td><td>73.4</td><td>72.71</td><td>71.95</td><td>71.51</td><td>71.31</td><td>71.22</td><td>72.23</td><td>73.67</td><td>74.27</td><td>74.56</td><td>75.01</td><td>76.23</td><td>76.58</td><td>76.68</td><td>77.6</td><td>77.57</td><td>77.79</td><td>77.72</td><td>77.35</td><td>77.26</td><td>77.27</td><td>77.23</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [16]:
data["Soya Oil"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>84.87</td><td>87.25</td><td>85.97</td><td>88.1</td><td>88.81</td><td>88.73</td><td>88.61</td><td>89.13</td><td>90.75</td><td>90.01</td><td>89.75</td><td>89.61</td><td>89.46</td><td>89.35</td><td>89.56</td><td>88.69</td><td>88.66</td><td>88.28</td><td>87.6</td><td>85.13</td><td>86.56</td><td>86.72</td><td>86.83</td><td>86.33</td><td>86.4</td><td>85.38</td><td>85.78</td><td>88.81</td><td>87.26</td><td>87.76</td><td>87.93</td><td>87.48</td><td>88.11</td><td>89.08</td><td>88.8</td><td>88.19</td><td>89.01</td><td>89.23</td><td>88.73</td><td>88.83</td><td>88.2</td><td>87.55</td><td>85.71</td><td>86.19</td><td>86.47</td><td>87.39</td><td>86.82</td><td>85.37</td><td>85.09</td><td>84.03</td><td>83.65</td><td>83.85</td><td>84.53</td><td>84.41</td><td>83.86</td><td>84.39</td><td>84.87</td><td>84.73</td><td>85.79</td><td>87.37</td><td>88.85</td><td>89.11</td><td>87.83</td><td>86.37</td><td>85.96</td><td>85.58</td><td>85.36</td><td>86.59</td>
			</tr><tr align="left">
				<td>All India Average</td><td>81.25</td><td>81.64</td><td>82.16</td><td>83.87</td><td>84.34</td><td>84.27</td><td>85.44</td><td>86.45</td><td>86.87</td><td>86.35</td><td>85.53</td><td>85.46</td><td>85.94</td><td>86.31</td><td>86.08</td><td>85.59</td><td>85.37</td><td>84.81</td><td>84.79</td><td>83.75</td><td>84.58</td><td>84.3</td><td>85.2</td><td>85.34</td><td>84.81</td><td>84.14</td><td>84.76</td><td>85</td><td>84.16</td><td>83.88</td><td>84.49</td><td>84.26</td><td>84.26</td><td>84.02</td><td>83.9</td><td>83.36</td><td>84.3</td><td>84.73</td><td>84.91</td><td>84.94</td><td>84.24</td><td>83.4</td><td>82.77</td><td>82.57</td><td>82.48</td><td>82.6</td><td>81.25</td><td>81.77</td><td>81.46</td><td>81.23</td><td>80.66</td><td>81.57</td><td>82.28</td><td>82.27</td><td>82.39</td><td>82.82</td><td>82.9</td><td>82.88</td><td>83.91</td><td>85.35</td><td>86.3</td><td>86.45</td><td>86.17</td><td>85.27</td><td>84.77</td><td>84.11</td><td>83.85</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [17]:
data["Sunflower Oil"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>94.09</td><td>96.53</td><td>95.09</td><td>98.88</td><td>100.29</td><td>99.51</td><td>99.83</td><td>101.62</td><td>100.84</td><td>99.97</td><td>98.12</td><td>99.56</td><td>102.06</td><td>102.64</td><td>102.48</td><td>102.96</td><td>103.67</td><td>103.47</td><td>103.53</td><td>101.62</td><td>102.76</td><td>102.22</td><td>102.24</td><td>100.09</td><td>100.12</td><td>100.95</td><td>105.6</td><td>105.15</td><td>104.3</td><td>104.23</td><td>106.38</td><td>104.93</td><td>104.25</td><td>105.28</td><td>104.35</td><td>105.53</td><td>106.79</td><td>107.09</td><td>107.68</td><td>107.29</td><td>107.11</td><td>105.4</td><td>101.61</td><td>102.47</td><td>102.38</td><td>102.88</td><td>103.71</td><td>103.32</td><td>103.9</td><td>102.54</td><td>102.65</td><td>102.65</td><td>102.4</td><td>103.48</td><td>102.46</td><td>103.12</td><td>102.44</td><td>101.62</td><td>102.81</td><td>103.52</td><td>103.45</td><td>103.39</td><td>103.33</td><td>102.39</td><td>102.38</td><td>101.93</td><td>101.93</td><td>102.89</td>
			</tr><tr align="left">
				<td>All India Average</td><td>90.85</td><td>90.99</td><td>90.76</td><td>92.1</td><td>92.65</td><td>92.34</td><td>92.32</td><td>93.66</td><td>94.74</td><td>94.38</td><td>94.98</td><td>95.17</td><td>96.5</td><td>97.96</td><td>97.52</td><td>98.22</td><td>98.03</td><td>97.84</td><td>98.03</td><td>98.49</td><td>99.47</td><td>98.61</td><td>98.81</td><td>97.66</td><td>96.9</td><td>95.85</td><td>96.62</td><td>96.05</td><td>96.06</td><td>94.79</td><td>95.93</td><td>95.16</td><td>94.13</td><td>93.93</td><td>94.06</td><td>94.32</td><td>94.99</td><td>94.77</td><td>93.91</td><td>93.56</td><td>93.54</td><td>92.59</td><td>92.65</td><td>92.74</td><td>94.01</td><td>95.02</td><td>95.24</td><td>95.72</td><td>96.11</td><td>95.9</td><td>95.5</td><td>95.5</td><td>95.07</td><td>96.28</td><td>95.67</td><td>95.43</td><td>94.28</td><td>93.84</td><td>93.86</td><td>94.38</td><td>94.46</td><td>94.06</td><td>93.73</td><td>93.21</td><td>92.76</td><td>92.36</td><td>92.25</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [18]:
data["Palm Oil"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>84.23</td><td>84.64</td><td>86.39</td><td>88.82</td><td>88.72</td><td>89.71</td><td>87.65</td><td>87.95</td><td>90.13</td><td>88.21</td><td>89.48</td><td>87.11</td><td>87</td><td>86.55</td><td>88.28</td><td>88</td><td>86.98</td><td>85.86</td><td>87.61</td><td>88.93</td><td>87.27</td><td>88.64</td><td>85.07</td><td>85.98</td><td>86.8</td><td>84.29</td><td>71.08</td><td>74.35</td><td>69.89</td><td>71.65</td><td>70.73</td><td>71</td><td>71.28</td><td>77.4</td><td>76.24</td><td>75.95</td><td>80.37</td><td>72.15</td><td>70.02</td><td>70.43</td><td>72.34</td><td>74.18</td><td>70.17</td><td>70.72</td><td>71.8</td><td>71.06</td><td>69.18</td><td>70.15</td><td>69.07</td><td>68.54</td><td>68.77</td><td>68.28</td><td>69.41</td><td>69.7</td><td>69.5</td><td>70.47</td><td>72.12</td><td>73.06</td><td>73.86</td><td>73.52</td><td>73.38</td><td>74.32</td><td>74.42</td><td>72.73</td><td>73.8</td><td>73.68</td><td>73.51</td><td>74.23</td>
			</tr><tr align="left">
				<td>All India Average</td><td>68.84</td><td>68.3</td><td>69.7</td><td>73.27</td><td>72.93</td><td>71.95</td><td>73.21</td><td>73.83</td><td>74.09</td><td>68.91</td><td>66.72</td><td>66</td><td>66.52</td><td>66.69</td><td>66.87</td><td>66.51</td><td>65.72</td><td>66.36</td><td>67.29</td><td>68.18</td><td>71.18</td><td>70.29</td><td>71.66</td><td>71.17</td><td>70.8</td><td>70.72</td><td>71.98</td><td>71.97</td><td>71.38</td><td>70.56</td><td>70.53</td><td>69.34</td><td>67.49</td><td>67.79</td><td>67.15</td><td>66.25</td><td>68.08</td><td>67.14</td><td>67.5</td><td>66.55</td><td>66.85</td><td>66.86</td><td>66.21</td><td>65.16</td><td>64.42</td><td>64.11</td><td>62.54</td><td>62.56</td><td>62.57</td><td>64.11</td><td>64.77</td><td>67.4</td><td>69.94</td><td>69.67</td><td>68.71</td><td>69.79</td><td>71.33</td><td>70.66</td><td>70.15</td><td>70.73</td><td>71.27</td><td>71.41</td><td>70.76</td><td>69.63</td><td>69.63</td><td>69.3</td><td>68.69</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [19]:
data["Potato"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>7.11</td><td>7.12</td><td>8.83</td><td>12.1</td><td>14.07</td><td>14.9</td><td>17.16</td><td>18.74</td><td>18.14</td><td>17.55</td><td>17.04</td><td>14.21</td><td>11.02</td><td>10.42</td><td>10.34</td><td>11.69</td><td>14.22</td><td>15.51</td><td>18.51</td><td>18.77</td><td>18.65</td><td>19.5</td><td>24.21</td><td>18.63</td><td>14.83</td><td>13.2</td><td>14.84</td><td>16.39</td><td>19.36</td><td>20.4</td><td>24.64</td><td>26.66</td><td>27.75</td><td>29.39</td><td>29.47</td><td>19.85</td><td>14.4</td><td>12.95</td><td>12.24</td><td>11.21</td><td>10.81</td><td>11.75</td><td>13.23</td><td>13.55</td><td>13.66</td><td>15.6</td><td>17.1</td><td>13.78</td><td>10.95</td><td>10.39</td><td>11.2</td><td>12.97</td><td>15.9</td><td>18.67</td><td>20.81</td><td>21.61</td><td>20.91</td><td>20.68</td><td>19.11</td><td>13.82</td><td>10.7</td><td>10.33</td><td>10.15</td><td>10.01</td><td>10.18</td><td>11.36</td><td>13.32</td><td>15.32</td>
			</tr><tr align="left">
				<td>All India Average</td><td>9.14</td><td>9.49</td><td>10.29</td><td>12.95</td><td>14.82</td><td>16.02</td><td>17.82</td><td>18.8</td><td>18.58</td><td>18.27</td><td>18.19</td><td>16.58</td><td>14.79</td><td>14.26</td><td>13.59</td><td>14.2</td><td>15.76</td><td>16.81</td><td>17.84</td><td>17.95</td><td>17.49</td><td>18.96</td><td>25.08</td><td>21.47</td><td>18.12</td><td>15.27</td><td>15.98</td><td>18.08</td><td>20.38</td><td>21.58</td><td>24.19</td><td>26.88</td><td>28.47</td><td>29.29</td><td>29.81</td><td>24.16</td><td>18.98</td><td>17.53</td><td>15.72</td><td>14.25</td><td>13.79</td><td>15.06</td><td>15.78</td><td>15.75</td><td>15.84</td><td>16.83</td><td>17.68</td><td>16.73</td><td>15.19</td><td>14.92</td><td>15.32</td><td>16.55</td><td>19.01</td><td>21.24</td><td>22.63</td><td>22.65</td><td>22.1</td><td>21.38</td><td>20.53</td><td>17.1</td><td>14.66</td><td>13.97</td><td>13.54</td><td>13.64</td><td>13.9</td><td>14.53</td><td>15.32</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [20]:
data["Onion"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>12.28</td><td>11.52</td><td>11.62</td><td>12.12</td><td>11.35</td><td>11.61</td><td>12.96</td><td>13.53</td><td>13.5</td><td>14</td><td>17</td><td>18.45</td><td>19.97</td><td>24.95</td><td>20.9</td><td>20.51</td><td>18.68</td><td>19.01</td><td>27.18</td><td>48.47</td><td>59.37</td><td>62.1</td><td>56.51</td><td>31.24</td><td>21.25</td><td>19.58</td><td>18.51</td><td>19.17</td><td>19.22</td><td>19.39</td><td>28.17</td><td>29.03</td><td>27.55</td><td>26.81</td><td>26.81</td><td>26.11</td><td>25.7</td><td>24.83</td><td>25.72</td><td>23.64</td><td>22.47</td><td>23.79</td><td>27</td><td>46.45</td><td>58.73</td><td>50.85</td><td>39.74</td><td>26.13</td><td>21.95</td><td>19.8</td><td>18.13</td><td>16.95</td><td>15.78</td><td>15.51</td><td>16.43</td><td>17.21</td><td>15.85</td><td>15.68</td><td>17.04</td><td>16.58</td><td>15.08</td><td>14.83</td><td>14.76</td><td>14.55</td><td>14.69</td><td>14.94</td><td>15.45</td><td>21.65</td>
			</tr><tr align="left">
				<td>All India Average</td><td>12.7</td><td>11.78</td><td>11.42</td><td>11.76</td><td>11.82</td><td>12.24</td><td>13.73</td><td>14.46</td><td>14.8</td><td>15.36</td><td>19.37</td><td>20.69</td><td>21.13</td><td>25.55</td><td>21.62</td><td>20.2</td><td>19.1</td><td>21.98</td><td>28.91</td><td>44.88</td><td>55.03</td><td>57.21</td><td>53.94</td><td>33.22</td><td>22.45</td><td>18.46</td><td>17.22</td><td>17.43</td><td>18.69</td><td>20.82</td><td>28.22</td><td>28.45</td><td>26.86</td><td>25.69</td><td>25.63</td><td>25.33</td><td>24.76</td><td>24.94</td><td>24.14</td><td>22.01</td><td>22.07</td><td>24.85</td><td>28.61</td><td>44.87</td><td>54.14</td><td>45.04</td><td>36.74</td><td>28.19</td><td>22.66</td><td>19.62</td><td>17.16</td><td>16.4</td><td>15.68</td><td>15.77</td><td>16.64</td><td>16.6</td><td>15.65</td><td>15.27</td><td>15.97</td><td>15.53</td><td>14.84</td><td>14.61</td><td>14.52</td><td>14.36</td><td>14.07</td><td>14.56</td><td>14.99</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [21]:
data["Tomato"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>12.39</td><td>12.18</td><td>18.85</td><td>24.67</td><td>18.98</td><td>16.38</td><td>29.55</td><td>31.48</td><td>25.22</td><td>20.89</td><td>18.61</td><td>16.74</td><td>15.32</td><td>15.27</td><td>17.13</td><td>17.9</td><td>17.88</td><td>20.86</td><td>44.5</td><td>42.06</td><td>35.73</td><td>35.35</td><td>51.21</td><td>38.24</td><td>24.12</td><td>18.84</td><td>18.87</td><td>19.93</td><td>17.32</td><td>14.9</td><td>29.33</td><td>52.51</td><td>45.91</td><td>36.43</td><td>24.32</td><td>23.9</td><td>27.78</td><td>26.93</td><td>27.81</td><td>28</td><td>31.55</td><td>27.75</td><td>30.47</td><td>28.29</td><td>30.52</td><td>33.92</td><td>44.54</td><td>34.42</td><td>29.16</td><td>25.93</td><td>21.95</td><td>20.99</td><td>19.9</td><td>32.05</td><td>44.56</td><td>35.08</td><td>29.1</td><td>29.98</td><td>25.65</td><td>20.49</td><td>16.82</td><td>16.48</td><td>18.01</td><td>19.73</td><td>16.94</td><td>21.02</td><td>57.22</td><td>27.1</td>
			</tr><tr align="left">
				<td>All India Average</td><td>12.79</td><td>12.92</td><td>17.2</td><td>20.71</td><td>19.84</td><td>19.83</td><td>27.99</td><td>26.9</td><td>23.14</td><td>20.61</td><td>19.92</td><td>17.8</td><td>15.99</td><td>15.9</td><td>15.5</td><td>15.9</td><td>21.68</td><td>30.42</td><td>40.53</td><td>32.93</td><td>29.75</td><td>32.53</td><td>43.61</td><td>30.85</td><td>20.25</td><td>15.68</td><td>15.83</td><td>17.39</td><td>18.42</td><td>18.04</td><td>35.3</td><td>50.17</td><td>36.87</td><td>30.19</td><td>24</td><td>23.03</td><td>23.04</td><td>20.86</td><td>20.42</td><td>20.36</td><td>25.62</td><td>25.63</td><td>28.89</td><td>25.35</td><td>25.29</td><td>28.47</td><td>38.79</td><td>30.57</td><td>27.99</td><td>19.92</td><td>16.83</td><td>18.84</td><td>26.73</td><td>40.17</td><td>40.67</td><td>29.61</td><td>24.55</td><td>25.37</td><td>21.45</td><td>16.8</td><td>14.67</td><td>15.62</td><td>16.66</td><td>17.35</td><td>16.86</td><td>21.44</td><td>56.97</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [22]:
data["Sugar"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>34.77</td><td>34.39</td><td>33.74</td><td>33.45</td><td>34.14</td><td>34.43</td><td>35.47</td><td>39.14</td><td>39.82</td><td>40.42</td><td>40.32</td><td>39.8</td><td>38.74</td><td>38.08</td><td>37.44</td><td>36.9</td><td>36.94</td><td>36.96</td><td>36.59</td><td>36.37</td><td>36.45</td><td>36.15</td><td>36.19</td><td>35.9</td><td>35.46</td><td>34.99</td><td>35.34</td><td>36.17</td><td>36.35</td><td>36.65</td><td>37.41</td><td>37.33</td><td>36.84</td><td>36.5</td><td>36.35</td><td>35.87</td><td>35.09</td><td>34.71</td><td>34.09</td><td>33.88</td><td>33.37</td><td>32.51</td><td>31.43</td><td>31.4</td><td>31.26</td><td>31.82</td><td>32.49</td><td>32.73</td><td>33.63</td><td>34.5</td><td>35.21</td><td>37.25</td><td>38.97</td><td>39.22</td><td>39.69</td><td>40.84</td><td>40.92</td><td>41.42</td><td>41.74</td><td>41.43</td><td>41.77</td><td>42.19</td><td>42.64</td><td>42.38</td><td>42.72</td><td>42.75</td><td>42.84</td><td>37.69</td>
			</tr><tr align="left">
				<td>All India Average</td><td>33.47</td><td>33.23</td><td>32.84</td><td>32.84</td><td>33.3</td><td>33.52</td><td>35.07</td><td>38.89</td><td>39.41</td><td>39.75</td><td>39.71</td><td>39.07</td><td>38.18</td><td>37.52</td><td>37.1</td><td>36.64</td><td>36.49</td><td>36.39</td><td>36.22</td><td>36.11</td><td>36.06</td><td>35.7</td><td>35.42</td><td>34.91</td><td>34.76</td><td>34.28</td><td>34.62</td><td>35.79</td><td>36.2</td><td>36.12</td><td>36.47</td><td>36.37</td><td>36.14</td><td>35.87</td><td>35.63</td><td>34.8</td><td>33.96</td><td>33.55</td><td>32.85</td><td>31.85</td><td>31.39</td><td>30.51</td><td>29.52</td><td>29.35</td><td>29.84</td><td>30.55</td><td>31.11</td><td>31.57</td><td>33.15</td><td>33.92</td><td>34.64</td><td>37.4</td><td>39.23</td><td>39.5</td><td>39.78</td><td>40.59</td><td>40.51</td><td>40.63</td><td>40.76</td><td>40.68</td><td>41.14</td><td>41.83</td><td>42.38</td><td>42.43</td><td>42.57</td><td>42.52</td><td>42.75</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [23]:
data["Gur"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>31.95</td><td>32.17</td><td>32.01</td><td>31.84</td><td>33.03</td><td>34.07</td><td>36.07</td><td>38.32</td><td>38.39</td><td>38.49</td><td>37.1</td><td>36.07</td><td>35.4</td><td>35.63</td><td>35.59</td><td>35.97</td><td>36.77</td><td>37.47</td><td>38.03</td><td>39.03</td><td>39.5</td><td>39.44</td><td>39.32</td><td>36.71</td><td>35.58</td><td>35.29</td><td>35.91</td><td>36.52</td><td>37.68</td><td>38.7</td><td>39.39</td><td>39.77</td><td>40.71</td><td>40.27</td><td>38.8</td><td>37.03</td><td>37.41</td><td>37.26</td><td>36.88</td><td>36.68</td><td>37.28</td><td>37.83</td><td>37.9</td><td>38.05</td><td>37.99</td><td>37.99</td><td>37.61</td><td>36.69</td><td>36.6</td><td>36.4</td><td>36.05</td><td>36.87</td><td>37.71</td><td>38.2</td><td>39.43</td><td>40.64</td><td>41.43</td><td>41.54</td><td>40.67</td><td>39.59</td><td>39</td><td>38.75</td><td>39.02</td><td>38.89</td><td>40.53</td><td>41.2</td><td>41.86</td><td>38.11</td>
			</tr><tr align="left">
				<td>All India Average</td><td>34.88</td><td>34.53</td><td>34.36</td><td>34.53</td><td>35.27</td><td>35.94</td><td>37.54</td><td>38.92</td><td>39.44</td><td>39.63</td><td>39.48</td><td>38.77</td><td>38.04</td><td>38.13</td><td>37.89</td><td>38.69</td><td>39.72</td><td>40.72</td><td>41.18</td><td>41.62</td><td>41.93</td><td>42.09</td><td>42.08</td><td>40.35</td><td>40.23</td><td>39.58</td><td>39.11</td><td>39.2</td><td>39.74</td><td>40.62</td><td>40.97</td><td>41.27</td><td>42.03</td><td>42.76</td><td>42.01</td><td>40.37</td><td>39.98</td><td>40.66</td><td>40.18</td><td>39.64</td><td>40.52</td><td>40.84</td><td>40.8</td><td>40.11</td><td>40.23</td><td>40.5</td><td>40.61</td><td>40.12</td><td>39.65</td><td>39.49</td><td>39.25</td><td>40.08</td><td>40.98</td><td>41.72</td><td>42.43</td><td>43.62</td><td>44.41</td><td>44.2</td><td>43.49</td><td>43.14</td><td>42.8</td><td>42.88</td><td>43.17</td><td>43.38</td><td>44.24</td><td>44.81</td><td>45.25</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [24]:
data["Milk"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>31.9</td><td>32.15</td><td>32.1</td><td>32.63</td><td>33.09</td><td>33.22</td><td>33.6</td><td>33.82</td><td>33.87</td><td>33.84</td><td>34.05</td><td>34.22</td><td>34.44</td><td>34.73</td><td>35.01</td><td>35.05</td><td>35.37</td><td>35.74</td><td>35.73</td><td>35.53</td><td>35.62</td><td>35.95</td><td>36.59</td><td>36.85</td><td>37</td><td>37.49</td><td>37.54</td><td>38.26</td><td>38.63</td><td>39.77</td><td>40.03</td><td>40.33</td><td>40.18</td><td>40.97</td><td>40.53</td><td>40.6</td><td>40.82</td><td>40.81</td><td>40.49</td><td>40.15</td><td>40.48</td><td>40.89</td><td>41.09</td><td>40.9</td><td>40.96</td><td>41.13</td><td>40.51</td><td>41.07</td><td>40.96</td><td>41.26</td><td>41.06</td><td>40.68</td><td>41.3</td><td>41.96</td><td>42.35</td><td>41.27</td><td>41.19</td><td>41.53</td><td>41.69</td><td>41.54</td><td>42.13</td><td>41.72</td><td>41.95</td><td>42.55</td><td>42.77</td><td>42.95</td><td>43.05</td><td>39.55</td>
			</tr><tr align="left">
				<td>All India Average</td><td>30.07</td><td>30.39</td><td>30.4</td><td>30.74</td><td>31.24</td><td>31.32</td><td>31.53</td><td>31.74</td><td>31.95</td><td>32.41</td><td>32.66</td><td>32.46</td><td>32.67</td><td>33.49</td><td>33.3</td><td>33.32</td><td>33.64</td><td>33.7</td><td>33.8</td><td>33.78</td><td>34.18</td><td>34.24</td><td>34.7</td><td>34.89</td><td>35.28</td><td>35.22</td><td>35.61</td><td>36.33</td><td>36.45</td><td>36.72</td><td>37.22</td><td>37.69</td><td>37.39</td><td>37.6</td><td>38.22</td><td>38.33</td><td>38.78</td><td>38.75</td><td>38.77</td><td>38.62</td><td>38.97</td><td>39.22</td><td>39.45</td><td>39.38</td><td>39.54</td><td>39.4</td><td>38.86</td><td>39.37</td><td>39.58</td><td>39.69</td><td>39.53</td><td>39.47</td><td>39.75</td><td>40.26</td><td>40.37</td><td>40.12</td><td>40.04</td><td>40.1</td><td>40.16</td><td>40.2</td><td>40.56</td><td>40.45</td><td>40.92</td><td>41.24</td><td>41.56</td><td>41.58</td><td>41.8</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [25]:
data["Tea (Loose)"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>193.67</td><td>188.67</td><td>184.55</td><td>185.31</td><td>187.02</td><td>188.8</td><td>194.16</td><td>198.33</td><td>199.88</td><td>203.67</td><td>206.19</td><td>209.71</td><td>214.89</td><td>207.29</td><td>203.61</td><td>208.24</td><td>214.75</td><td>216.89</td><td>215.99</td><td>212.88</td><td>218.07</td><td>216.72</td><td>218.13</td><td>220.33</td><td>223.53</td><td>219.49</td><td>219.58</td><td>227.02</td><td>216.21</td><td>216.61</td><td>210.86</td><td>211.33</td><td>207.67</td><td>208.06</td><td>209.4</td><td>206.27</td><td>204.64</td><td>208.79</td><td>205.38</td><td>203.15</td><td>203.88</td><td>205.05</td><td>202.47</td><td>203.21</td><td>203.68</td><td>204.48</td><td>204.81</td><td>205.53</td><td>205.87</td><td>204.4</td><td>197.47</td><td>198.41</td><td>197.77</td><td>197.29</td><td>196.86</td><td>199.72</td><td>200.47</td><td>203.56</td><td>202.31</td><td>201.84</td><td>202.58</td><td>202.68</td><td>203.02</td><td>203.45</td><td>203.68</td><td>203.96</td><td>206.19</td><td>204.37</td>
			</tr><tr align="left">
				<td>All India Average</td><td>183.88</td><td>183.75</td><td>181.48</td><td>183.58</td><td>185.53</td><td>186.05</td><td>188.28</td><td>192.72</td><td>195.13</td><td>200.92</td><td>197.93</td><td>200.59</td><td>201.93</td><td>198.97</td><td>195</td><td>197.03</td><td>200.37</td><td>200.94</td><td>202.86</td><td>203.34</td><td>205.12</td><td>204.85</td><td>203.47</td><td>203.06</td><td>204.05</td><td>203.02</td><td>201</td><td>207.29</td><td>203.93</td><td>205.71</td><td>204.24</td><td>205.09</td><td>212.26</td><td>211.4</td><td>205.09</td><td>204.68</td><td>205.02</td><td>205.25</td><td>205.23</td><td>205.46</td><td>207.19</td><td>206.75</td><td>207.26</td><td>206.29</td><td>205.61</td><td>206.19</td><td>204.85</td><td>204.83</td><td>204.46</td><td>202.81</td><td>197.72</td><td>199.15</td><td>199.02</td><td>198.97</td><td>197.64</td><td>198.71</td><td>197.01</td><td>197.77</td><td>197.38</td><td>198.96</td><td>200.55</td><td>200.9</td><td>200.24</td><td>200.88</td><td>201.43</td><td>202.68</td><td>204.14</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")
In [26]:
data["Salt (Iodised)"] = table_to_series("""<table cellspacing="0" align="Center" rules="all" border="1" style="border-collapse:collapse;">
			<tbody><tr>
				<th scope="col">Zone</th><th scope="col">Jan 2012</th><th scope="col">Feb 2012</th><th scope="col">Mar 2012</th><th scope="col">Apr 2012</th><th scope="col">May 2012</th><th scope="col">Jun 2012</th><th scope="col">Jul 2012</th><th scope="col">Aug 2012</th><th scope="col">Sep 2012</th><th scope="col">Oct 2012</th><th scope="col">Nov 2012</th><th scope="col">Dec 2012</th><th scope="col">Jan 2013</th><th scope="col">Feb 2013</th><th scope="col">Mar 2013</th><th scope="col">Apr 2013</th><th scope="col">May 2013</th><th scope="col">Jun 2013</th><th scope="col">Jul 2013</th><th scope="col">Aug 2013</th><th scope="col">Sep 2013</th><th scope="col">Oct 2013</th><th scope="col">Nov 2013</th><th scope="col">Dec 2013</th><th scope="col">Jan 2014</th><th scope="col">Feb 2014</th><th scope="col">Mar 2014</th><th scope="col">Apr 2014</th><th scope="col">May 2014</th><th scope="col">Jun 2014</th><th scope="col">Jul 2014</th><th scope="col">Aug 2014</th><th scope="col">Sep 2014</th><th scope="col">Oct 2014</th><th scope="col">Nov 2014</th><th scope="col">Dec 2014</th><th scope="col">Jan 2015</th><th scope="col">Feb 2015</th><th scope="col">Mar 2015</th><th scope="col">Apr 2015</th><th scope="col">May 2015</th><th scope="col">Jun 2015</th><th scope="col">Jul 2015</th><th scope="col">Aug 2015</th><th scope="col">Sep 2015</th><th scope="col">Oct 2015</th><th scope="col">Nov 2015</th><th scope="col">Dec 2015</th><th scope="col">Jan 2016</th><th scope="col">Feb 2016</th><th scope="col">Mar 2016</th><th scope="col">Apr 2016</th><th scope="col">May 2016</th><th scope="col">Jun 2016</th><th scope="col">Jul 2016</th><th scope="col">Aug 2016</th><th scope="col">Sep 2016</th><th scope="col">Oct 2016</th><th scope="col">Nov 2016</th><th scope="col">Dec 2016</th><th scope="col">Jan 2017</th><th scope="col">Feb 2017</th><th scope="col">Mar 2017</th><th scope="col">Apr 2017</th><th scope="col">May 2017</th><th scope="col">Jun 2017</th><th scope="col">Jul 2017</th><th scope="col">Average</th>
			</tr><tr align="left">
				<td>NORTH ZONE</td><td>13.53</td><td>13.53</td><td>13.51</td><td>13.56</td><td>13.83</td><td>14.07</td><td>14.2</td><td>14.47</td><td>14.75</td><td>14.76</td><td>14.92</td><td>15.04</td><td>15.07</td><td>15.26</td><td>15.27</td><td>15.29</td><td>15.34</td><td>15.37</td><td>15.48</td><td>15.53</td><td>15.56</td><td>15.49</td><td>15.57</td><td>15.74</td><td>15.92</td><td>15.97</td><td>16</td><td>16.03</td><td>16.03</td><td>16.07</td><td>16.3</td><td>16.38</td><td>16.33</td><td>16.41</td><td>16.55</td><td>16.62</td><td>16.63</td><td>16.6</td><td>16.64</td><td>16.65</td><td>16.64</td><td>16.73</td><td>16.84</td><td>16.85</td><td>16.85</td><td>16.96</td><td>17.13</td><td>17.14</td><td>17.04</td><td>16.93</td><td>16.96</td><td>17.18</td><td>17.06</td><td>17.23</td><td>17.23</td><td>17.37</td><td>17.42</td><td>17.41</td><td>17.44</td><td>17.5</td><td>17.56</td><td>17.63</td><td>17.56</td><td>17.53</td><td>17.69</td><td>17.69</td><td>17.65</td><td>16.52</td>
			</tr><tr align="left">
				<td>All India Average</td><td>11.99</td><td>12.06</td><td>12.1</td><td>12.15</td><td>12.33</td><td>12.56</td><td>12.73</td><td>12.94</td><td>13.13</td><td>13.24</td><td>13.21</td><td>13.22</td><td>13.21</td><td>13.53</td><td>13.44</td><td>13.51</td><td>13.56</td><td>13.68</td><td>13.75</td><td>13.71</td><td>13.79</td><td>13.91</td><td>13.82</td><td>13.86</td><td>14.05</td><td>14.02</td><td>14.1</td><td>14.32</td><td>14.44</td><td>14.49</td><td>14.61</td><td>14.75</td><td>14.81</td><td>14.86</td><td>14.91</td><td>14.83</td><td>14.88</td><td>14.72</td><td>14.72</td><td>14.85</td><td>14.75</td><td>14.63</td><td>14.76</td><td>14.85</td><td>14.9</td><td>14.9</td><td>14.91</td><td>15.03</td><td>15.19</td><td>15.01</td><td>15.04</td><td>15.23</td><td>15</td><td>15.08</td><td>14.74</td><td>14.8</td><td>14.77</td><td>14.89</td><td>15.06</td><td>15.08</td><td>15.12</td><td>15.15</td><td>14.98</td><td>14.99</td><td>15.12</td><td>15.15</td><td>15.12</td><td>&nbsp;</td>
			</tr>
		</tbody></table>""")

The final DataFrame ready to be analyzed:

In [27]:
data
Out[27]:
Rice Wheat Atta (Wheat) Gram Tur Urad Moong Masoor Groundnut Oil Mustard Oil ... Sunflower Oil Palm Oil Potato Onion Tomato Sugar Gur Milk Tea (Loose) Salt (Iodised)
2012-01-01 20.51 16.22 17.95 49.19 61.36 60.29 63.11 45.60 110.03 91.08 ... 90.85 68.84 9.14 12.70 12.79 33.47 34.88 30.07 183.88 11.99
2012-02-01 20.59 16.16 17.87 49.20 61.15 59.33 63.04 46.09 112.06 92.55 ... 90.99 68.30 9.49 11.78 12.92 33.23 34.53 30.39 183.75 12.06
2012-03-01 20.77 16.28 17.84 49.97 60.82 58.59 62.21 45.96 115.81 94.22 ... 90.76 69.70 10.29 11.42 17.20 32.84 34.36 30.40 181.48 12.10
2012-04-01 20.88 16.39 17.79 50.96 60.59 58.42 62.29 46.63 120.18 96.72 ... 92.10 73.27 12.95 11.76 20.71 32.84 34.53 30.74 183.58 12.15
2012-05-01 21.05 16.51 17.88 53.88 61.74 58.10 62.13 49.03 121.98 97.94 ... 92.65 72.93 14.82 11.82 19.84 33.30 35.27 31.24 185.53 12.33
2012-06-01 21.76 16.73 18.15 56.36 63.08 58.36 62.27 50.75 123.45 97.97 ... 92.34 71.95 16.02 12.24 19.83 33.52 35.94 31.32 186.05 12.56
2012-07-01 22.48 17.02 18.44 60.98 65.63 60.07 64.21 52.69 125.67 99.74 ... 92.32 73.21 17.82 13.73 27.99 35.07 37.54 31.53 188.28 12.73
2012-08-01 23.02 17.73 19.10 66.00 69.99 62.44 69.22 54.96 129.18 103.01 ... 93.66 73.83 18.80 14.46 26.90 38.89 38.92 31.74 192.72 12.94
2012-09-01 23.36 18.80 20.13 66.65 71.15 62.80 70.47 55.20 129.54 104.63 ... 94.74 74.09 18.58 14.80 23.14 39.41 39.44 31.95 195.13 13.13
2012-10-01 24.22 19.21 21.03 66.00 70.09 62.35 70.26 55.09 130.26 104.73 ... 94.38 68.91 18.27 15.36 20.61 39.75 39.63 32.41 200.92 13.24
2012-11-01 24.41 19.53 21.56 65.90 69.45 61.30 71.50 54.78 131.63 105.00 ... 94.98 66.72 18.19 19.37 19.92 39.71 39.48 32.66 197.93 13.21
2012-12-01 24.44 19.96 21.95 64.94 69.02 60.93 73.02 53.80 133.60 104.98 ... 95.17 66.00 16.58 20.69 17.80 39.07 38.77 32.46 200.59 13.22
2013-01-01 24.65 19.90 22.02 62.44 67.98 59.76 72.55 53.71 134.08 104.66 ... 96.50 66.52 14.79 21.13 15.99 38.18 38.04 32.67 201.93 13.21
2013-02-01 25.21 20.28 22.39 60.49 67.17 59.13 72.65 54.02 134.74 105.54 ... 97.96 66.69 14.26 25.55 15.90 37.52 38.13 33.49 198.97 13.53
2013-03-01 25.10 20.57 22.49 57.65 67.07 58.15 72.70 53.77 134.74 104.38 ... 97.52 66.87 13.59 21.62 15.50 37.10 37.89 33.30 195.00 13.44
2013-04-01 25.25 20.45 22.51 56.18 68.28 58.07 73.12 54.74 133.61 103.22 ... 98.22 66.51 14.20 20.20 15.90 36.64 38.69 33.32 197.03 13.51
2013-05-01 25.40 20.09 22.29 55.79 68.89 58.43 73.91 55.72 132.44 100.73 ... 98.03 65.72 15.76 19.10 21.68 36.49 39.72 33.64 200.37 13.56
2013-06-01 25.85 20.52 22.65 54.72 69.04 58.47 74.75 57.43 131.04 99.93 ... 97.84 66.36 16.81 21.98 30.42 36.39 40.72 33.70 200.94 13.68
2013-07-01 26.32 20.66 22.78 52.56 68.78 58.33 74.26 58.00 130.38 98.76 ... 98.03 67.29 17.84 28.91 40.53 36.22 41.18 33.80 202.86 13.75
2013-08-01 26.65 20.87 22.87 50.96 68.40 58.73 73.71 58.30 128.96 97.23 ... 98.49 68.18 17.95 44.88 32.93 36.11 41.62 33.78 203.34 13.71
2013-09-01 26.90 20.60 22.81 51.30 69.07 59.81 73.19 58.54 128.55 96.64 ... 99.47 71.18 17.49 55.03 29.75 36.06 41.93 34.18 205.12 13.79
2013-10-01 27.02 21.06 23.19 51.34 69.53 60.75 74.08 58.38 126.09 96.22 ... 98.61 70.29 18.96 57.21 32.53 35.70 42.09 34.24 204.85 13.91
2013-11-01 27.53 21.20 23.35 50.95 70.18 63.00 75.71 59.29 125.30 98.54 ... 98.81 71.66 25.08 53.94 43.61 35.42 42.08 34.70 203.47 13.82
2013-12-01 27.43 21.58 23.41 50.46 70.41 63.41 76.64 58.45 124.65 98.77 ... 97.66 71.17 21.47 33.22 30.85 34.91 40.35 34.89 203.06 13.86
2014-01-01 27.23 21.84 23.80 49.58 70.02 64.35 78.78 59.07 122.32 98.51 ... 96.90 70.80 18.12 22.45 20.25 34.76 40.23 35.28 204.05 14.05
2014-02-01 27.44 21.76 23.55 48.21 69.95 65.13 82.24 59.07 120.82 98.06 ... 95.85 70.72 15.27 18.46 15.68 34.28 39.58 35.22 203.02 14.02
2014-03-01 27.57 21.61 23.47 48.79 70.14 65.87 85.13 60.33 122.24 97.91 ... 96.62 71.98 15.98 17.22 15.83 34.62 39.11 35.61 201.00 14.10
2014-04-01 27.44 21.29 23.40 48.70 70.25 67.26 88.31 62.57 121.53 98.14 ... 96.05 71.97 18.08 17.43 17.39 35.79 39.20 36.33 207.29 14.32
2014-05-01 27.57 21.03 22.92 48.59 70.41 69.07 89.08 64.79 122.39 97.63 ... 96.06 71.38 20.38 18.69 18.42 36.20 39.74 36.45 203.93 14.44
2014-06-01 27.79 21.00 23.12 47.41 69.93 71.20 87.08 65.45 118.76 96.84 ... 94.79 70.56 21.58 20.82 18.04 36.12 40.62 36.72 205.71 14.49
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2015-02-01 27.66 22.90 24.97 48.33 79.00 79.15 99.32 74.32 119.95 101.32 ... 94.77 67.14 17.53 24.94 20.86 33.55 40.66 38.75 205.25 14.72
2015-03-01 27.43 22.72 24.97 49.39 81.75 79.62 99.21 73.49 119.10 99.64 ... 93.91 67.50 15.72 24.14 20.42 32.85 40.18 38.77 205.23 14.72
2015-04-01 27.56 22.61 24.95 51.31 85.23 82.99 100.41 74.18 119.63 99.75 ... 93.56 66.55 14.25 22.01 20.36 31.85 39.64 38.62 205.46 14.85
2015-05-01 27.50 22.33 24.53 56.54 91.89 91.33 102.29 77.84 120.88 100.22 ... 93.54 66.85 13.79 22.07 25.62 31.39 40.52 38.97 207.19 14.75
2015-06-01 27.58 22.56 24.61 59.40 95.33 97.34 101.29 80.78 120.54 101.53 ... 92.59 66.86 15.06 24.85 25.63 30.51 40.84 39.22 206.75 14.63
2015-07-01 27.52 22.64 24.67 60.00 98.42 98.86 99.11 82.32 120.62 102.77 ... 92.65 66.21 15.78 28.61 28.89 29.52 40.80 39.45 207.26 14.76
2015-08-01 27.34 22.50 24.49 61.09 105.13 100.88 98.36 84.75 121.48 103.23 ... 92.74 65.16 15.75 44.87 25.35 29.35 40.11 39.38 206.29 14.85
2015-09-01 27.40 22.70 24.62 63.78 119.95 107.54 99.71 88.48 123.57 105.24 ... 94.01 64.42 15.84 54.14 25.29 29.84 40.23 39.54 205.61 14.90
2015-10-01 27.55 23.14 24.78 68.05 143.78 129.42 107.20 90.27 124.10 107.17 ... 95.02 64.11 16.83 45.04 28.47 30.55 40.50 39.40 206.19 14.90
2015-11-01 27.52 23.54 24.74 69.56 152.29 142.15 108.78 89.74 123.66 113.32 ... 95.24 62.54 17.68 36.74 38.79 31.11 40.61 38.86 204.85 14.91
2015-12-01 27.43 23.41 24.71 69.01 150.08 142.64 107.31 87.60 123.79 112.57 ... 95.72 62.56 16.73 28.19 30.57 31.57 40.12 39.37 204.83 15.03
2016-01-01 27.06 23.35 24.58 67.42 145.74 139.56 105.31 83.61 123.62 111.91 ... 96.11 62.57 15.19 22.66 27.99 33.15 39.65 39.58 204.46 15.19
2016-02-01 27.04 23.82 24.98 66.05 140.14 137.17 102.56 80.33 123.20 110.87 ... 95.90 64.11 14.92 19.62 19.92 33.92 39.49 39.69 202.81 15.01
2016-03-01 26.95 23.69 24.95 65.48 135.27 135.29 100.96 79.12 122.80 107.76 ... 95.50 64.77 15.32 17.16 16.83 34.64 39.25 39.53 197.72 15.04
2016-04-01 26.85 23.27 24.58 68.26 138.22 141.35 100.88 81.10 125.03 106.34 ... 95.50 67.40 16.55 16.40 18.84 37.40 40.08 39.47 199.15 15.23
2016-05-01 26.83 23.34 24.48 73.58 141.19 152.19 100.72 82.84 129.30 108.36 ... 95.07 69.94 19.01 15.68 26.73 39.23 40.98 39.75 199.02 15.00
2016-06-01 27.03 23.39 24.61 79.26 140.10 152.73 98.41 83.80 132.23 108.42 ... 96.28 69.67 21.24 15.77 40.17 39.50 41.72 40.26 198.97 15.08
2016-07-01 27.38 23.31 24.76 93.07 139.33 151.67 96.86 85.57 134.52 108.37 ... 95.67 68.71 22.63 16.64 40.67 39.78 42.43 40.37 197.64 14.74
2016-08-01 27.53 23.31 24.97 99.79 132.27 143.84 92.93 85.39 135.05 109.40 ... 95.43 69.79 22.65 16.60 29.61 40.59 43.62 40.12 198.71 14.80
2016-09-01 27.51 23.32 25.07 100.28 121.27 131.50 87.75 84.16 135.47 110.05 ... 94.28 71.33 22.10 15.65 24.55 40.51 44.41 40.04 197.01 14.77
2016-10-01 27.45 23.42 25.38 112.11 121.57 126.13 86.58 83.49 135.80 109.53 ... 93.84 70.66 21.38 15.27 25.37 40.63 44.20 40.10 197.77 14.89
2016-11-01 27.73 24.05 26.14 123.41 118.82 119.57 84.18 82.01 135.55 110.59 ... 93.86 70.15 20.53 15.97 21.45 40.76 43.49 40.16 197.38 15.06
2016-12-01 28.15 24.56 27.12 123.70 113.03 113.77 82.69 80.27 135.39 111.58 ... 94.38 70.73 17.10 15.53 16.80 40.68 43.14 40.20 198.96 15.08
2017-01-01 28.34 24.51 27.12 114.84 102.96 107.86 80.64 78.69 135.42 110.58 ... 94.46 71.27 14.66 14.84 14.67 41.14 42.80 40.56 200.55 15.12
2017-02-01 28.87 24.65 26.85 100.76 95.95 103.44 79.24 77.11 133.84 110.06 ... 94.06 71.41 13.97 14.61 15.62 41.83 42.88 40.45 200.90 15.15
2017-03-01 28.85 24.41 26.64 89.43 89.55 98.84 78.75 74.80 133.46 109.65 ... 93.73 70.76 13.54 14.52 16.66 42.38 43.17 40.92 200.24 14.98
2017-04-01 28.64 23.96 26.17 88.80 88.13 99.33 80.89 74.89 133.37 107.62 ... 93.21 69.63 13.64 14.36 17.35 42.43 43.38 41.24 200.88 14.99
2017-05-01 28.84 23.73 25.98 86.79 85.35 97.29 80.59 73.61 132.76 106.90 ... 92.76 69.63 13.90 14.07 16.86 42.57 44.24 41.56 201.43 15.12
2017-06-01 29.07 23.68 25.70 85.14 82.50 95.02 78.90 71.72 131.69 105.88 ... 92.36 69.30 14.53 14.56 21.44 42.52 44.81 41.58 202.68 15.15
2017-07-01 29.47 23.67 25.97 81.95 79.02 90.50 76.83 68.95 131.09 105.58 ... 92.25 68.69 15.32 14.99 56.97 42.75 45.25 41.80 204.14 15.12

67 rows × 22 columns

In [28]:
data.to_pickle("retail_price_data.pkl")